根据IHS Markit分析,由于混合动力和电动汽车,电源和太阳能逆变器主要应用市场的需求,预计2020年碳化硅(SiC)和氮化镓(GaN)功率半导体的新兴市场将达到近10亿美元。**主要功率半导体供应商TI、ST、Maxim、高通、ADI等纷纷抢攻推出新品。安森美半导体工业及云电源公司营销及策略经理Ali Husain在日前接受<电子发烧友>关于电源设计的挑战及趋势主题采访时表示,功率损耗和系统尺寸是电源设计的关键因素。相比以往电源系统设计使用的硅材料,碳化硅(SiC)和氮化镓(GaN)等材料的更低损耗可降低功率损耗,使用这些宽禁带(WBG)产品,使系统体积可以通过减少散热器或增加开关频率变得更小,从而使无源元件更小。
业界认为,由于SiC和GaN比Si材料高3倍的能量带隙、10倍的介电场强以及更快的开关速度和热导率。使得前者拥有更高的功率密度、更加环保,且能让电源系统更小更薄、更优化的成本和较低的工作温度和热应力。整个*三代半导体系统比硅系统更好。
安森美半导体作为电源半导体重要供应商之一,投入了大量资金研发宽禁带(WBG)产品。安森美半导体定位为以合理成本提供较可靠的WBG产品,产品范围宽广,涵盖SiC二极管、SiC MOSFET和氮化镓(GaN),以满足对电力电子设备更高能效、更小体积及更低温度的要求。
以汽车应用为例,在汽车功能电子化的趋势下,为实现更高的能效,要提高电池电压,这就需要考虑宽禁带方案。如SiC可用于要求小型化、高功率的应用,如牵引逆变器,采用400V电池的逆变器能效增加65%,采用800V电池的逆变器能效提升则可达80%。GaN则在车载充电(OBC)方面更有优势,因为OBC的可用空间有限,而GaN频率范围更高,可缩减系统体积,降低开关损耗,实现更高能效。
另一方面,受可再生能源市场的快速增长推动,对电源和太阳能逆变器提出了更高的效率和功率密度要求,而搭载了WBG产品的高性能应用将**解决这一问题。
Ali Husain指出,替代能源和能源储存系统将继续从较高功率系统转向较低功率系统。这可以通过采用较小组的面板以最大功率点工作来增加太阳能电池阵列产生的总功率。此外,分布式能源资源,如住宅太阳能,存储和虚拟发电厂,将有助于推动转向更小电源转换系统的发展。
不仅如此,WBG产品在照明领域节能90%,电力电子节能30%以上,系统体积减少三分之二。同时,它也是5G必须的基本材料。
Ali Husain表示,像碳化硅(SiC)和氮化镓(GaN)这样的宽禁带材料是提高功率密度和转换效率以及减小尺寸的良好技术。由于这些材料具有较低的导电损耗并且还可以更高的频率开关,电源系统设计人员可以在这些要求之间选择新的,更好的权衡取舍。如选择更高的频率,诸如电容器和电感器的无源元件的尺寸可更小,或保持相同的开关频率,但损耗可更低,并且可以使散热器和整体尺寸更小。即使宽禁带半导体的成本增加,但整个系统的成本仍可保持不变甚至更低。
Efinix是一家专注于可编程产品平台和技术的公司,据外媒报道,三星电子宣布将与Efinix公司合作开发三星10nm硅工艺的Quantum eFPGA。Efinix的联合创始人,**执行官兼总裁Sammy Cheung说:“这是从40nm Trion T20 FPGA到10nm Quantum eFPGA的重大飞跃。我们正在利用我们的**架构的硅工艺无关性以及三星内存业务部门的巨大支持实现PDK到GDS。据介绍,通过将**功率,性能,区域优势与三星良好的硅制造技术相结合,该合作伙伴将为人工智能、数据中心和通信基础设施等市场提供较先进的FPGA芯片解决方案。”
嵌入式FPGA(eFPGA)是指将一个或多个FPGA以IP的形式嵌入ASIC,ASSP或SoC等芯片中。换句话说,eFPGA是一种数字可重构结构,由可编程互连中的可编程逻辑组成,通常表现为矩形阵列,数据输入和输出位于边缘周围。 eFPGA通常具有数百或数千个输入和输出,可连接到总线、数据路径、控制路径、GPIO、PHY或任何需要的器件。所有eFPGA都将查找表(LUT)作为基本构建模块。 LUT有N个输入选择一个小表,其输出表示N个输入的任何需要的布尔函数。 有些eFPGA LUT有四个输入,有的有六个。有些LUT有两个输出。 LUT通常在输出端具有触发器; 这些可以用来存储结果。这些LUT寄存器组合通常以四进制形式出现,还有进位算术和移位器,以便有效地实现加法器。